Welcome to my blog, hope you enjoy reading
RSS

Selasa, 14 Juni 2011

STOIKIOMETRI


BAB I
STOIKIOMETRI

A. PENDAHULUAN
Di awal kimia, aspek kuantitatif perubahan kimia, yakni stoikiometri reaksi kimia, tidak mendapat banyak perhatian. Bahkan saat perhatian telah diberikan, teknik dan alat percobaan tidak menghasilkan hasil yang benar. Salah satu contoh melibatkan teori flogiston. Flogistonis mencoba menjelaskan fenomena pembakaran dengan istilah “zat dapat terbakar”. Menurut para flogitonis, pembakaran adalah pelepasan zat dapat etrbakar (dari zat yang terbakar). Zat ini yang kemudian disebut ”flogiston”. Berdasarkan teori ini, mereka mendefinisikan pembakaran sebagai pelepasan flogiston dari zat terbakar. Perubahan massa kayu bila terbakar cocok dengan baik dengan teori ini. Namun, perubahan massa logam ketika dikalsinasi tidak cocok dengan teori ini. Walaupun demikian flogistonis menerima bahwa kedua proses tersebut pada dasarnya identik. Peningkatan massa logam terkalsinasi adalah merupakan fakta. Flogistonis berusaha menjelaskan anomali ini dengan menyatakan bahwa flogiston bermassa negatif.
Filsuf dari Flanders Jan Baptista van Helmont (1579-1644) melakukan percobaan “willow” yang terkenal. Ia menumbuhkan bibit willow setelah mengukur massa pot bunga dan tanahnya. Karena tidak ada perubahan massa pot bunga dan tanah saat benihnya tumbuh, ia menganggap bahwa massa yang didapatkan hanya karena air yang masuk ke bijih. Ia menyimpulkan bahwa “akar semua materi adalah air”. Berdasarkan pandangan saat ini, hipotesis dan percobaannya jauh dari sempurna, tetapi teorinya adalah contoh yang baik dari sikap aspek kimia kuantitatif yang sedang tumbuh. Helmont mengenali pentingnya stoikiometri, dan jelas mendahului zamannya.
Di akhir abad 18, kimiawan Jerman Jeremias Benjamin Richter (1762-1807) menemukan konsep ekuivalen (dalam istilah kimia modern ekuivalen kimia) dengan pengamatan teliti reaksi asam/basa, yakni hubungan kuantitatif antara asam dan basa dalam reaksi netralisasi. Ekuivalen Richter, atau yang sekarang disebut ekuivalen kimia, mengindikasikan sejumlah tertentu materi dalam reaksi. Satu ekuivalen dalam netralisasi berkaitan dengan hubungan antara sejumlah asam dan sejumlah basa untuk mentralkannya. Pengetahuan yang tepat tentang ekuivalen sangat penting untuk menghasilkan sabun dan serbuk mesiu yang baik. Jadi, pengetahuan seperti ini sangat penting secara praktis. Pada saat yang sama Lavoisier menetapkan hukum kekekalan massa, dan memberikan dasar konsep ekuivalen dengan percobaannya yang akurat dan kreatif. Jadi, stoikiometri yang menangani aspek kuantitatif reaksi kimia menjadi metodologi dasar kimia. Semua hukum fundamental kimia, dari hukum kekekalan massa, hukum perbandingan tetap sampai hukum reaksi gas semua didasarkan stoikiometri. Hukum-hukum fundamental ini merupakan dasar teori atom, dan secara konsisten dijelaskan dengan teori atom. Namun, menarik untuk dicatat bahwa, konsep ekuivalen digunakan sebelum teori atom dikenalkan.

B.                      ISI

Ø                       Definisi
Dalam ilmu kimia, stoikiometri (kadang disebut stoikiometri reaksi untuk membedakannya dari stoikiometri komposisi) adalah ilmu yang mempelajari dan menghitung hubungan kuantitatif dari reaktan dan produk dalam reaksi kimia (persamaan kimia). Kata ini berasal dari bahasa Yunani stoikheion (elemen) dan metriā (ukuran).

Contoh: \rm{} \frac{2.00 \ g \ NaCl}{58.44 \ g \
 NaCl \ mol^{-1}} = 0.034 \ mol
\rm{}\left(\frac{2.00 \ g \ 
NaCl}{1}\right)\left(\frac{1 \ mol \ NaCl}{58.44 \ g \ NaCl}\right) = 
0.034 \ mol
\rm{} \left(\frac{85 \ g \ Fe_2 
O_3}{1}\right)\left(\frac{1 \ mol \ Fe_2 O_3}{160 \ g \ Fe_2 
O_3}\right)\left(\frac{2 \ mol \ Al}{1 \ mol \ Fe_2 
O_3}\right)\left(\frac{27 \ g \ Al}{1 \ mol \ Al}\right) = 28.6875 \ g \
 Al
Ø     Massa Atom Relatif dan Massa Atom
Dalton mengenali bahwa penting untuk menentukan massa setiap atom karena massanya bervariasi untuk setiap jenis atom. Atom sangat kecil sehingga tidak mungkin menentukan massa satu atom. Maka ia memfokuskan pada nilai relatif massa dan membuat tabel massa atom (gambar 1.3) untuk pertamakalinya dalam sejarah manusia. Dalam tabelnya, massa unsur teringan, hidrogen ditetapkannya satu sebagai standar (H = 1). Massa atom adalah nilai relatif, artinya suatu rasio tanpa dimensi. Walaupun beberapa massa atomnya berbeda dengan nilai modern, sebagian besar nilai-nilai yang diusulkannya dalam rentang kecocokan dengan nilai saat ini. Hal ini menunjukkan bahwa ide dan percobaannya benar.
Kemudian kimiawan Swedia Jons Jakob Baron Berzelius (1779-1848) menentukan massa atom dengan oksigen sebagai standar (O = 100). Karena Berzelius mendapatkan nilai ini berdasarkan analisis oksida, ia mempunyai alasan yang jelas untuk memilih oksigen sebagai standar. Namun, standar hidrogen jelas lebih unggul dalam hal kesederhanaannya. Kini, setelah banyak diskusi dan modifikasi, standar karbon digunakan. Dalam metoda ini, massa karbon 12C dengan 6 proton dan 6 neutron didefinisikan sebagai 12,0000. Massa atom dari suatu atom adalah massa relatif pada standar ini. Walaupun karbon telah dinyatakan sebagai standar, sebenarnya cara ini dapat dianggap sebagai standar hidrogen yang dimodifikasi. Perbedaan kecil dari massa atom yang ditemukan di tabel periodik (24.305) hasil dari perbedaan cara dalam membulatkan angkanya.
Ø     Massa molekul dan massa rumus
Setiap senyawa didefinisikan oelh rumus kimia yang mengindikasikan jenis dan jumlah atom yang menyususn senyawa tersebut. Massa rumus (atau massa rumus kimia) didefinisikan sebagai jumlah massa atom berdasarkan jenis dan jumlah atom yang terdefinisi dalam rumus kimianya. Rumus kimia molekul disebut rumus molekul, dan massa rumus kimianya disebut dengan massa molekul.5 Misalkan, rumus molekul karbon dioksida adalah CO2, dan massa molekularnya adalah 12 +(2x 6) = 44. Seperti pada massa atom, baik massa rumus dan massa molekul tidak harus bilangan bulat. Misalnya, massa molekul hidrogen khlorida HCl adalah 36,5. Bahkan bila jenis dan jumlah atom yang menyusun molekul identik, dua molekul mungkin memiliki massa molekular yang berbeda bila ada isostop berbeda yang terlibat.
Tidak mungkin mendefinisikan molekul untuk senyawa seperti natrium khlorida. Massa rumus untuk NaCl digunakan sebagai ganti massa molekular.
Ø     Kuantitas Materi dan Mol
Metoda kuantitatif yang paling cocok untuk mengungkapkan jumlah materi adalah jumlah partikel seperti atom, molekul yang menyusun materi yang sedang dibahas. Namun, untuk menghitung partikel atom atau molekul yang sangat kecil dan tidak dapat dilihat sangat sukar. Alih-alih menghitung jumlah partikel secara langsung jumlah partikel, kita dapat menggunakan massa sejumlah tertentu partikel. Kemudian, bagaimana sejumlah tertentu bilangan dipilih? Untuk  menyingkat cerita, jumlah partikel dalam 22,4 L gas pada STP (0, 1atm) dipilih sebagai jumlah standar. Bilangan ini disebut dengan bilangan Avogadro. Nama bilangan Loschmidt juga diusulkan untuk menghormati kimiawan Austria Joseph Loschmidt (1821-1895) yang pertama kali dengan percobaan (1865).
Sejak 1962, menurut SI (Systeme Internationale) diputuskan bahwam dalam dunia kimia, mol digunakan sebagai satuan jumlah materi. Bilangan Avogadro didefinisikan jumlah atom karbon dalam 12 g 126C dan dinamakan ulang konstanta Avogadro.
Ada beberapa definisi “mol”:
(i) Jumlah materi yang mengandung sejumlah partikel yang terkandung dalam 12 g 12C. (ii) satu mol materi yang mengandung sejumlah konstanta Avogadro partikel.
(iii) Sejumlah materi yang mengandung 6,02 x 1023 partikel dalam satu mol.
Ø     Satuan Massa Atom (sma)
Karena standar massa atom dalam sistem Dalton adalah massa hidrogen, standar massa dalam SI tepat 1/12 massa 12C. Nilai ini disebut dengan satuan massa atom (sma) dan sama dengan 1,6605402 x 10–27 kg dan D (Dalton) digunakan sebagai simbolnya. Massa atom didefinisikan sebagai rasio rata-rata sma unsur dengan distribusi isotop alaminya dengan 1/12 sma 12C.










C.  KESIMPULAN

Stoikiometri adalah ilmu yang mempelajari dan menghitung hubungan kuantitatif dari reaktan dan produk dalam reaksi kimia (persamaan kimia). Penelitian terhadap reaksi gas (pada t dan P sama) telah melahirkan hukum penyatuan volume dan hukum Avogadro. Hukum ini menjadi dasar lahirnya konsep massa atom relatif dan massa molekiul relatif yang sangat berguna dalam menentukan rumus senyawa. Massa atom adalah nilai relatif, artinya suatu rasio tanpa dimensi. Massa atom relatif dapat ditentukan dengan hukum Dulong dan Petit, analisis Cannizzaro, dan spektroskopi massa. Sedangkan massa molekul relatif dapat ditentukan dengan cara rapat uap, difusi, Regnault, atau sifat koligatif.
Karena standar massa atom dalam sistem Dalton adalah massa hidrogen, standar massa dalam SI tepat 1/12 massa 12C. Nilai ini disebut dengan satuan massa atom (sma) dan sama dengan 1,6605402 x 10–27 kg dan D (Dalton) digunakan sebagai simbolnya. Massa atom didefinisikan sebagai rasio rata-rata sma unsur dengan distribusi isotop alaminya dengan 1/12 sma 12C.




















D.                      DAFTAR PUSTAKA

Syukri, S. 1999. Kimia Dasar. Bandung. ITB







































E.  SOAL DAN JAWABAN

1)      Perubahan massa atom disebabkan perubahan standar. Hitung massa atom hidrogen dan karbon menurut standar Berzelius (O = 100). Jawablah dengan menggunakan satu tempat desimal.
Jawab:
Massa atom hidrogen = 1 x (100/16) = 6,25 (6,3), massa atom karbon = 12 x (100/16)=75,0
2)      Perhitungan massa atom. Hitung massa atom magnesium dengan menggunakan distribsui isotop berikut: 24Mg: 78,70%; 25Mg: 10,13%, 26Mg: 11,17%.
Jawab:
0,7870 x 24 + 0,1013 x 25 +0,1117 x 26 = 18,89+2,533+2,904 = 24,327(amu; lihat bab 1.3(e))
Massa atom Mg = 18,89 + 2,533 + 2,904 =24.327 (amu).
3)      Massa molekular mokelul yang mengandung isotop.
Hitung massa molekular air H2O dan air berat D2O (2H2O) dalam bilangan bulat.
Jawab:
Massa molekular H2O = 1 x 2 + 16 = 18, massa molekular D2O = (2 x 2) + 16 = 20
Perbedaan massa molekular H2O dan D2O sangat substansial, dan perbedaan ini sifat fisika dan kimia anatara kedua jenis senyawa ini tidak dapat diabaikan. H2O lebih mudah dielektrolisis daripada D2O. Jadi, sisa air setelah elektrolisis cenderung mengandung lebih banyak D2O daripada dalam air alami.
4)      Isotop. Karbon alami adalah campuran dua isotop, 98,90(3)% 12C dan 1,10(3)% 13C. Hitung massa atom karbon.
Jawab: Massa atom karbon = 12 x 0,9890 + 13 x 0,0110 = 12,01(1)
5)      Konstanta Avogadro. Intan adalah karbon murni. Hitung jumlah atom karbon dalam 1 karat (0,2 g) intan.
Jawab: Jumlah atom karbon = [0,2 (g)/12,01 (g mol-1)] x 6,022 x 1023(mol-1) = 1,00 x 1022
6)      Hukum perbandingan berganda. Komposisi tiga oksida nitrogen A, B dan C diuji. Tunjukkan bahwa hasilnya konsisten dengan hukum perbandingan berganda: massa nitrogen yang bereaksi dengan 1 g oksigen dalam tiap oksida: Oksida A: 1,750 g, oksida B: 0,8750 g, oksida C: 0,4375 g.
Jawab: Bila hukum perbandingan berganda berlaku, rasio massa nitrogen yang terikat pada 1 g oksigen harus merupakan bilangan bulat.

Hasilnya cocok dengan hukum perbandingan berganda.
7)      Massa atom. Tembaga yang ada di alam dianalisis dengan spektrometer massa. Hasilnya: 63Cu 69,09% 65Cu 30,91%. Hitung massa atom Cu. Massa 63Cu dan 65Cu adalah 62,93 dan 64,93 sma.
Jawab: Massa atom Cu=62,93x (69,09/100) + 64,93x (30,91/100) = 63,55 (sma)
8)      Mol. Bila kumbang menyengat korbannya, kumbang akan menyalurkan sekitar 1 mg (1x 10-6 g) isopentil asetat C7H14O2. Senyawa ini adalah komponen fragrant pisang, dan berperan sebagai materi pentransfer informasi untuk memanggil kumbang lain. Berapa banyak molekul dalam 1 mg isopentil asetat?
Jawab: Massa molekular isopentil asetat adalah M = 7 x 12,01 + 14 x 1,008 + 2 x 16,00 = 130.18 (g mol-1). Jumlah mol: 1,0 x 10-6(g)/130,18(g mol-1) = 7,68 x 10-9(mol) Jumlah molekul 1 mg isopentil asetat: 7,68 x 10-9(mol) x 6,022 x 1023 (mol-1) = 4,6 x1015
9)      46 gram natrium bereaksi dengan 12 gram karbon dan 48 gram oksigen membentuk senyawa Na2CO3. Tentukan:
a. Hitung perbandingan Na, C, dan O dalam senyawa na2CO3
b. jika terdapat 8 gram natrium maka berapa massa karbon dan oksigen yang diperlukan untuk membentuk Na2CO3?
c. Hitung prosentase unsur dalam senyawa Na2CO3?

Jawab:
Karena massa masing-masing unsur sudah diketahui maka kita dapat mencari perbandingan unsur dalam Na2CO3 yaitu:


= Na : C : O
= 46 : 12 : 48 (dibagai 12)
= 3,8 : 1 : 4





Jika tersedia natrium sebanyak 8 gram maka kita dapat menentukan factor pengkali agar nantinya perhitungan kita menjadi jauh lebih mudah, yaitu:

Factor pengkali
= 8 / 3,8
= 2,11

Maka karbon yang dibutuhkan adalah:
= perbandingan C x factor pengkali
= 1 x 2,11
= 2,11 g

Oksigen yang dibutuhkan adalah
= perbandingan O x factor pengkali
= 4 x 2,11
= 8,44 g

Massa total Na + C + O
= 46 g + 12 g + 48 g
= 106 g

Prosentase Na                              
= 46 g/106 g x 100%
= 43,39%

Prosentase O
= 48 g / 106 g x 100%
= 45,28%

10)   Massa molekul hidrogen. Massa atom hidrogen adalah 1,008. Hitung massa molekul hidrogen.
Jawab: Massa molar hidrogen adalah 2,016 x 10-3 kg mol-1. Massa satu molekul hidrogen = [2,016 x 10-3 (kg mol-1)]/[6,022 x 1023(mol-1) = 3,35 x 10-27(kg).

0 komentar:

Posting Komentar